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Abstract—Real-world network data is often very noisy and
contains false-positive edges and misses false-negative ones. These
superfluous and missing edges can be identified by evaluating the
statistical significance of the number of common neighbors of any
two nodes. To test whether the number of common neighbors,
the co-occurrence of two nodes, is statistically significant, the
values need to be compared with the expected occurrence in
a suitable random graph model. Zweig has proven that for
networks with a skewed degree sequence, a random graph model
which maintains the degree sequence, the fixed degree sequence
model, needs to be used instead of estimating the numbers from
a simple independence model [1]. However, using that random
graph model practically means to sample networks by a Markov
chain approach and to measure the occurrence of each subgraph
or the co-occurrence of each pair of nodes in each of the
samples. Thus, the computational complexity depends on both,
the length of the Markov chain and the number of samples.
In this article we show, based on ground truth, that there are
various phase transition-like tipping points that enable to choose
a comparatively low number of samples and that reduce the
length of the Markov chains without reducing the quality of the
significance test.

I. INTRODUCTION

The identification of so-called network motifs, i.e., sub-
graphs whose occurrence is statistically significant, is of
general interest, especially in biological data sets [2]. The
significance of a subgraph is tested by counting its occurrence
in an observed real-world network and by comparing it to
the expected occurrence in a suitable random graph model. A
random graph model is defined as a set of graphs together with
a probability mass function that assigns a probability to each
member of the set, summing up to 1. While not specifically
a network motif, the number of common neighbors of two
nodes x, y, their so-called co-occurrence coocc(x, y), can also
be tested on its statistical significance in the same way. Zweig
and Kaufmann have proven that, while a simple independence
model estimates the expected co-occurrence of two nodes to be
deg(x)deg(y)/2m, where deg(x) denotes the degree of node
x, this model is wrong if the degree sequence is skewed [1],
[3]. The degree sequence DS(G) of a graph G is defined
as the sequence of degrees of the nodes of G in some fixed
order. Instead, a more detailed random graph model needs to
be used, such as the set G(DS) of all simple graphs with the
same degree sequence as the observed network and uniform

probability to sample any of it—this model is in the following
called the fixed degree-sequence model or FDSM. Note that a
graph is simple if it does not contain multiple edges between
the same nodes and no self-loops.

The statistical significance of the number of common
neighbors can be used to do link assessment, i.e., to evaluate
whether an existing edge in a graph is likely to be a true-
positive and whether a non-existing edge is likely to be a false-
negative [4], [5], [6]. A link assessment results in a ranking of
all pairs of nodes, where (existing) edges with a high ranking
are assumed to be true-positives and pairs of nodes not yet
connected by an edge but with a high ranking are assumed
to be false-negatives. This assumption can be quantified for
those networks with an assigned ground truth, i.e., where there
is some noisy edge set containing false-positives and false-
negatives, and a verified set of edges.

Unfortunately, there is no fast way of sampling from
G(DS). ToDo: [Andreas, macht der Satz so Sinn, oder ist
das exact sampling scheme auch auf einer MC aufgebaut?]
An exact sampling scheme as proposed by Del Genio et al.
is practically not useful for large data sets [?]. There is,
however, a Markov chain with an unknown mixing time. Since
in this article we only deal with bipartite graphs, the following
describes the Markov chain for sampling from the set of all
bipartite graphs with the same degree sequences on both sets
of nodes (see, for example, [11]): starting from the observed
network, in every step two edges e1 = (a, b) and e2 = (c, d)
are chosen uniformly at random from all edges and it is tested
whether they are swappable, i.e., whether e′1 = (a, d) and
e′2 = (c, b) are already in the graph. If so, the tested edges e′1
and e′2 are inserted into the graph and e1, e2 are deleted from
the graph. A pre-defined number of swap tests are done—
regardless of the result of the test—and it can be shown that
after a sufficient number of tests, the resulting graph is any one
of G(DS) with the same probability. The sufficient number,
the so-called mixing time, is to date unknown for this specific
Markov chain—and the known upper bounds (e.g., [?], [12])
are practically useless because they are either too big like
Jerrum et al’s result in O(n14 log4 n) or not computable for
large networks like Brualdi’s result that the convergence time
depends on the spectral gap of the transition matrix of the
Markov Chain [13]—computing the latter would require to
know all possible graphs in G(DS) and their transitions.



Depending on the size of the graph and the resulting data
structures to store it in memory, a single swap test and updating
the data structure(s) after a successful swap cost between O(1)
and O(log n) or O(min{deg(x), deg(y)}). Note that, as for all
Markov chains with known degrees, there is the probability of
an importance sampling, but again, it is not of practical use
for large data sets [8].

A safe number of steps is considered to be in O(m logm)
which is the lower bound such that, expectedly, every edge
is chosen at least once for a swap test. Often, the safe
number of steps is also used for a so-called burn-in phase
where one tries to get away from the often very strongly
structured observed network to one that is more random in
its structure. From this instance, a chain of swaps is started,
where every xth resulting graph is tested for its structural
features—these graphs comprise the sample against which the
statistical significance of structural features of the observed
graph is tested. Again, a “safe” size of this set is often used,
for example, 10, 000 samples. ToDo: [Nina: Do we have a ref
here?] This scheme will be called the serial burn-in (sampling)
scheme in the following.

To empirically analyze the necessary burn-in length, Gionis
et al. proposed some data-mining specific, empirical conver-
gence tests, namely observing the convergence of the number
of so-called frequent item sets or their frequencies [7], [8]. By
plotting the number of frequent item sets in dependence of the
number of swap tests, it can be seen that this number stabilizes
(Gionis et al., Fig. 4). However, counting frequent item sets is
computationally expensive and Gionis et al. do not provide an
online stopping criterion that allows to stop sampling.

This article looks at link assessment in bipartite graphs,
i.e., given a graph G = (VL ∪ VR, E) with a node set VL, a
node set VR and an edge set E only connecting nodes of VL
with nodes of VR, we assess whether any two nodes in VR
have a statistically significant number of nodes in common—
this information can be used to build insightful one-mode
projections of bipartite graphs [1], [3], [9]. This article provides
two online heuristics, one to determine a sufficient number of
the number of swaps, one to determine a sufficient number
of samples. For the first time, the quality of the resulting
statistics is tested against ground truth for the link assessment
task which shows astonishing tipping points: while at first—
with low numbers of swap tests—the link assessment is not
good, a small increase has a strong impact on the quality of
the link assessment—an effect that is often called a phase
transition. Similarly, computing the co-occurrences for all
pairs of nodes of interest in one sample, is costly (in Ω(n2)
to O(n3), depending on data structures and density). Thus,
reducing the number of samples is also an issue. Again, we
find that there is a phase-transition-like behavior in the number
of samples. Finally, especially for bipartite graphs in which the
hidden connections between nodes on one side of the graph are
assessed [1], [3], [9], it can make sense to reduce the graph
by sampling from nodes of the other side. For example, in
market-basket data with millions of customers but only 10,000
of products, it might not be necessary to look at the whole data
set but to reduce it to the market baskets of 50,000 customers.
Again, we find a phase-transition like behavior that points
to an optimal set. Optimizing these parameters, we achieved
speedups of up to one order of magnitude.

Our novel contributions are:

• To show that there is a phase-transition like behavior in
the length of the burn-in phase, the number of swaps, the
number of samples and the sample size of the left-hand
side in a bipartite graph.

• We present two online heuristics to estimate just the
required #samples and #users.

• We demonstrate their effectiveness and stability in numer-
ical studies for multiple datasets.

The next section introduces definitions from statistics to
assess the statistical significance of the co-occurrence of two
nodes in a bipartite graph.

II. DEFINITIONS

Given a bipartite graph G = (VL ∪ VR, E) as defined
above, the co-occurrence of two nodes x, y ∈ VR is defined
as the number of their common neighbors in VL. This value
is bound from above by min{deg(x), deg(y)}, the minimal
degree of both nodes. Thus, its absolute value cannot be used
to understand its significance as nodes with a small degree
would always be disfavored. Their expected co-occurrence
with respect to some random graph model, e.g., the FDSM
(cooccFDSM (x, y)), is defined as the expected co-occurrence
in all graphs in the model, given their probability. If it is
not possible to compute it, it is approximated by the average
observed co-occurrence in a uniform sample from the random
graph model. In this article we will identify the two but please
bear in mind that the approximation quality is depending on
the sample size and on the quality of the sample. Given a
sample from a random graph model, two statistical values
can be computed with respect to one pair of nodes and their
observed co-occurrence: the p-value denoting the fraction of
samples observed in which the co-occurrence of x and y was at
least as high as the observed one; the z-score of the observed
co-occurrence given the co-occurrence distribution of x and y
in the sample:

p-value(x, y) =

#samples∑
i=1

{
1, if coocci(x, y) > coocc(x, y)

0, otherwise
,

z-score(x, y) =
leverage(x, y)

stddev
(
{coocci(x, y)}i=1,..,|samples|

) ,
Based on previous work by Zweig et al. [1], [3] and Horvat
et al. [9], two nodes with a high z-score, or low p-value, are
connected in a one-mode projection of the bipartite graph. It
often shows that they are also semantically similar, for example
this method can identify similar movies [1], [3] or biologically
similar proteins [4]. In this article, we rank all edges by their
p-value and break ties by the z-score.

III. GROUND TRUTH AND PPVk

We are using two data sets, the Netflix competition data set
and a medium size MovieLens data set1; both data sets show
ratings of films by a number of users. By setting a threshold,
the data can be represented as a bipartite graph between users
and movies, where an edge (u, j) represents that user u likes

1The 100k MovieLens data set, available from http://grouplens.org/datasets/
movielens/.



film j. By finding significant co-occurrences between any two
movies i, j, a one-mode projection can be built [3]. We use a
ground truth data set based on movie sequels like Star Wars I
to VI, as compiled by Horvat and Andreas Spitz (University
Heidelberg), first used in a paper by Horvat and Zweig [6].
This ground truth can be used for both data sets. The idea is
that, for a given set of sequels like the Star Wars movies or
all James Bond movies, the most significant co-occurrences
are assumed to be with other sequels from the same set. Thus,
ranking all pairs of films (where at least one is a sequel from
a series) by the significance of their co-occcurrence, the most
significant pairs should be sequels from the same set. The
quality of such a ranking can be evaluated by the positive
predictive value PPVk, where the k indicates the number of
pairs of films in the ground truth and the PPV is the fraction
of correctly identified pairs from the ground truth in the set of
the k highest ranked pairs of films. This measure was proposed
by Liben-Nowell and Kleinberg as more meaningful in the very
unbalanced link prediction problem which is very similar to
the problem proposed here [10].

IV. PHASE TRANSITIONS

For each parameter of the algorithm, i.e., the number of
swaps, the number of samples and the length of the burn-in-
phase, the PPVk can be computed for the resulting ranking
of the co-occurrences. Here we show that the quality of the
ranking improves very suddenly in all of the three parameters.
This indicates on the one hand that these parameters are often
smaller than anticipated but also that they have to be chosen
well because the quality does not rise linearly in any of them:
choosing a too low number of, e.g., swaps can significantly
harm the quality of the algorithm. A last question to be
analyzed is whether it is reasonable to take the full Netflix
data set with 100 million ratings or whether a random subset
of it is good enough - also here we see a phase transition-like
behavior.

Fig. 1. Quality over number of samples. For a wide variety of datasets narrow
phase transitions are present.

For the runtime of the algorithm, the most important
question is how many samples need to be drawn since the
co-occurrence needs to be computed for every pair of movies
of interest which - in general - is in O(n3). Fig. 1 shows a
very steep transition in quality in dependence of the number
of samples: The full MovieLens data set requires about 1024
samples to reach a PPVk-value of 0.286 ± 0.005. Spending

more samples only marginally improves the results, e.g., for
4096 samples the PPVk-value is 0.291 ± 0.002. For the full
Netflix data set, 384 samples already result in a PPVk-value
of 0.4206± 0.0019, while 16, 384 samples only improve this
value to 0.4217 ± 0.0012, but would take 43x more time to
compute. Note, however, that this steep, phase-transition-like
behavior also has the downside that a too small number of
samples decreases the quality enormously: using 64 instead of
384 samples still yields a PPVk of 0.20±0.03, using only 48
samples decreases it to a useless value of 0.001± 0.001.

The number of swaps per sample is computationally a bit
less important, but the results show again that a too low number
of swaps per sample in the serial burn-in sampling scheme can
strongly decrease the quality of the algorithm, even if 10, 000
samples are drawn from the random graph model. Fig. 2 shows
the steep transitions when varying the number of swaps.

Fig. 2. Quality over number of swaps. For a wide variety of datasets narrow
phase transitions are present similar to the one for samples.

Fig. 3. Quality over the number of users in the Netflix dataset. The users
are selected at random, the dataset has 478k users.

Fig. 3 shows the quality of the ranking for different sizes
of subsets of users in the bipartite graph. It can be clearly
seen that the maximally achievable quality depends strongly
on the user set’s size: with 1, 000 users, a PPVk-value of
only 0.20±0.04 can be achieved while the full data set allows
for a PPVk-value of 0.424± 0.007. Fig. 3 shows the quality
in dependence of the number of users and the number of
samples from the random graph model. The data shows that
taking 100, 000 users out of the 480, 000 uniformly at random
(averaged over 10 of these sets) allows for the same overall
quality, but only with more samples from the FDSM. It seems



that, in general, a smaller set is sufficient if more samples from
the random graph model are made to assess the significance
of the observed co-occurrence values.

This section has shown that there are various phase
transition-like changes in the resulting quality of the link
assessment that need to be regarded when selecting a subset
from a larger data set, the number of swaps in a serial burn-
in-scheme, and finally the number of samples. While we had
ground truth to evaluate this behavior in these cases, other data
sets do not necessarily come with a precompiled ground truth.
Thus, the next section introduces an online heuristic for large
data sets that can be used to estimate the necessary number of
swaps and samples to assess the significance of the observed
co-occurrence in a bipartite graph.

V. HEURISTICS

Fig. 1 shows a sharp phase transition from a PPVk of 0
to one of 0.41 between 48 and 192 samples; after that the
PPVk is almost constant even up to 10k samples. Since the
runtime is linear in the number of samples, there is no point in
generating more than 192 samples from a practical perspective.
However, we also see from Fig. 1 that the transition is also
data dependent. Analogously, the same observation can be
made for the number of swaps. To reduce the overall runtime
without decreasing the quality of the result, it is thus necessary
to monitor the sampling process online and stop when the
number of swaps and the number of samples is sufficient. In
the following we propose two online heuristics that indicate
the minimum required #samples and #swaps, without the usage
of any kind of ground truth.

A. Heuristic for #swaps: Same Degree Coocc Convergence

The number of swaps needs to be high enough, otherwise
the sampled graphs are not independent from the starting
graph. The idea of the swap heuristic is to build a correlated
variable θ that indicates when the Markov Chain has mixed,
i.e., the built graph is independent from the starting point. For
small graphs, this number can be set to m logm, the number
of steps such that, expectedly, every edge has been picked
at least once. However, for larger graphs, this number can
be prohibitively large. But larger graphs might contain a set
of pairs of nodes with the same degree that start with very
different co-occurrences. For example, there might be seven
nodes with degree 10 and four nodes with degree 20. Thus,
there are 28 pairs of nodes with the same degrees.

While in every random sample the coocc(a, b) of two
nodes a, b is different, we know that the average over all
samples cooccFDSM (a, b) converges to a fixed number that
only depends on the degrees of a and b. Thus, it is also the
same for all pairs of nodes with the same degrees:

∀a, b, c, d ∈ Vl : deg(a) = deg(c) ∧ deg(b) = deg(d)

⇒ cooccFDSM (a, b) = cooccFDSM (c, d). (1)

if the sampled graphs are independent from each other. Fig. 4
shows the cooccFDSM of four different movie pairs of the
Netflix data, with the same degrees but different observed co-
occurrences (points on the left of the x-axis). The figure then
shows the average co-occurrence of 10, 000 sampled graphs
in dependence of the number of swaps in the serial burn-in

sampling scheme. It can be clearly seen that the average co-
occurrence of all pairs converges to the same value.

Based on this insight we propose the variable θ(#swaps)
to determine the optimal number of swaps as described in
the following, described now: From the dataset collect all sets
D(x, y) of pairs of nodes that have at least Np node pairs with
the same degrees x and y. Compose G by selecting Np pairs
u.a.r. from all sets: ToDo: [Why not use all of them? This
seems to be an unjustified parameter.]

D(x, y) = {(a, b) | ∀a, b ∈ Vl : deg(a) = x, deg(b) = y},
G = {(d1, .., dNp) ∈ D(x, y) | ∀x, y ∈ N : |D(x, y)| ≥ Np}.

From this set G take Ng groups at random: g1, ..gNg
∈ G. In

each of these groups test the convergence of the average co-
occurrence by computing the normalized standard deviation
δ := s/m of the cooccFDSM in this group, where s is the
standard deviation of the sample and m is its mean.

The variable θ is then defined as the mean over all
deviations δ, see Fig. 4.

C(gi, #swaps) = {coocc#swaps
FDSM (a, b) | ∀(a, b) ∈ gi},

δ(gi, #swaps) =
std [C(gi, #swaps)]
mean [C(gi, #swaps)]

,

θ(#swaps) =
1

Ng

Ng∑
i=1

δ(gi, #swaps).

How good is this heuristic to find the minimal number of swaps
for a high-quality result? To empirically test it, the ground
truth can be used once again: Fig. 5 shows the value of θ over
#swaps for Np = 4 and Ng = 24 in blue and the PPVk in
yellow. The heuristic shows an almost inverted behavior with
respect to the PPVk, indicating a good correlation. Thus, when
θ approaches 0, we assume that the quality of the resulting
significance test is reliable.

Based on θ we can search now a good #swap without
relying on the ground truth. Note that for small #swaps it is
very efficient to evaluate θ, even for 10k samples. Starting with
a low #swaps, we continuously increase it until θ < θmin. A
threshold of θmin = 0.01 seamed to be a reasonable choice
in our tests, meaning an average relative error of 1% in the
co-occurrence (coocc). The complete swap heuristic is shown
in Algorithm 1.

Data: Graph G(VL ∪ VR, E) with vertices VL and VR
and edges E, VR being the vertices of interest,
Ng, Np, θmin, #samples;

Result: #swaps
G0 := G randomized with |E| ln |E| swaps;
Select Ng groups with Np pairs of nodes with same
degrees at random from VR each;
#swaps := max(|VL|, |VR|) ln max(|VL|, |VR|);
shigh := |E| ln |E|;
do

#swaps :=
√

#swaps · shigh;
Evaluate θ(#swaps) with given #samples from G0;

while θ(#swaps) > θmin;
Algorithm 1: Same Degree Coocc Convergence Swap
Heuristic



Fig. 4. Convergence of the cooccFDSM for the Netflix dataset with 10k
users.

Fig. 5. Swap heuristic θ and the PPV.

B. Heuristic for #samples: Internal PPVk

The heuristics for determining an ideal number of samples
is based on the idea that the ranking of the most significant
co-occurring pairs (pairs of nodes with the most significant
number of common neighbors) should stabilize with the num-
ber of samples.

We thus propose to use the internal PPVk heuristic which
makes use of an “internal ground truth”, defined as the k pairs
of nodes ranked highest in the previous run, where the ranking
is based on the p-value and ties are broken with respect to the
z-score. Then, based on this internal ground truth GT , the
PPVk of the current result is calculated, i.e., we quantify how
much the newly sampled graph(s) change the ranking of the
top k′ pairs and stop if that value is larger than some threshold
value α. Algorithm 2 shows the steps in details.

Collecting the internal ground truth GT ′, while not increas-
ing the complexity of the algorithm, is still computationally
relevant. So instead of collecting it for every sample, we only
collect it every samplesstep samples. The stopping quality α
and the length k′, in turn, should be high enough to guaranty
a sufficient stability, but low enough to keep the overhead as
small as possible.

Fig. 6 shows the output of the heuristic in action for the
full Netflix dataset. The following configuration has been used:

samplesstep = 16; k′ = 0.2% |VR|2; α = 0.95.

Data: Graph G(VL ∪ VR, E) with vertices VL and VR
and edges E, VR being the vertices of interest,
#swaps, k′, samplesstep, α;

Result: ranking according to p-value and z-score for all
pairs of vertices (u, v) ∈ (VR × VR);

Calculate coocc(u, v) ∀ (u, v) ∈ (VR × VR);
G0 := G; i := 0;
do

GT ′ := k′ pairs (u, v) with the highest ranking of
Gi ;
for k := 1 to samplesstep do

i := i+ 1; Gi := Gi−1;
Randomize Gi with given #swap;
Calculate coocci(u, v) ∀ (u, v) ∈ (VR × VR);

end
PPV ′ := PPVk′(List of k′ highest ranked node
pairs containing at least one node from GT ′, GT ′);

while PPV ′ < α;
Calculate ranking according to Section V-A;

Algorithm 2: Internal PPVk Sample Heuristic

In blue the PPVk for the Movie Ground Truth is shown,
while in dashed lines the internal PPV ′ is shown. And while
the two curves for each data set are not perfectly aligned,
the internal PPVk converges later than the ground-truth-based
PPVk, such that it is safe to use the heuristic as a stopping
point. Based on the graph we can conclude, that the internal
PPVk gives us a stable and clear indicator of when to stop
the algorithm.

Fig. 6. Sample heuristic PPV’ and PPV.

C. Results

Based on the two stopping heuristics, the runtime of the
algorithm can be dramatically reduced, especially for the large
Netflix data set (Table I): the swap heuristics alone seems to
be only helpful for large enough graphs: the movieLens data is
so small that the overhead to compute the heuristics actually
increases the overall runtime. For the medium-sized Netflix
subset (100 k users), the heuristics decreases the runtime by
a factor of 1.5. Computing the statistical significance of all
co-occurrences with a “safe” burn-in phase of m logm = 109

swaps and the same number of swaps for each subsequent
sample with a total of 10, 000 samples took 20 hours. Mind that
this time was only achievable by running 128 sampling chains
in parallel on a cluster, i.e., computing the algorithm on only



TABLE I. SPEED AND QUALITY FOR MOVIES GT

Data set Samples Swaps Runtime PPV

State-of-the-art
Netflix, 487k users 10,000 109 20 h 0.422
Netflix, 100k users 10,000 2.6× 108 5.5 h 0.425
MoviesLens 10,000 1.4× 107 877 s 0.290

Swap Heuristic2:
Netflix, 100k users 10,000 3.7× 107 (7x) 0.2+3.4 h (1.5x) 0.424 (−0.2%)
MovieLens 10,000 1.1× 107 370+554 s (0.95x) 0.290 (+0%)

Sample Heuristic1:
Netflix, 487k users 640 109 1.42 h (14x) 0.418 (−0.9%)
Movies Lens 3,456 1.4× 107 326 s (2.7x) 0.291 (+1%)

1 samplesstep = 128; k′ = 0.2% |VR|2; α = 0.95.
2 Np = 4; Ng = 24; θmin = 0.01

one CPU would have taken approximately 3.5 months! Thus,
the swap heuristic alone already decreases the computation
time to an amenable runtime of 3.6 hours on the cluster.
The improvement of the runtime by reducing the number of
samples from 10, 000 to 640 is even larger, namely a factor
of 14x, thereby reducing the quality of the link assessment by
only about 1%. Even if the algorithm ran on a single CPU,
the runtime would now be a bit more than a day. Similarly,
also the MovieLens data profits from the swap heuristics by
reducing the runtime by a factor of 2.7.

VI. CONCLUSION

While the usage of the FDSM to assess the statistical
significance of structural patterns in graphs has often been
proposed, its application was so far prohibitive for large-scale
data. This is caused by the fact that there is no practically
usable known upper bound on the mixing time of the Markov
chain that allows to sample uniformly at random from the
FDSM. Similarly, there is no known bound on the number of
necessary samples to achieve a good quality of the expected
values by the observed means in the sample.

Here we have shown that two online heuristics can help to
determine a sufficient number of swaps and samples to achieve
results with a very good quality with respect to the quality
achievable with “safe” parameters. This was only possible by
the usage of ground truth data that allows to evaluate the
quality of the resulting significance evaluation.The reduction
in runtime by a factor of up to 14 makes it possible to apply
the proposed algorithm to the full Netflix data set and get the
result within two days on a single CPU core without reducing
the quality significantly. Further research will have to show
whether the results can be transferred to other kind of network
data like protein-protein interaction data or social network data.
However, here it is much more difficult to obtain ground truth
data for the evaluation.

Reducing the data to a much smaller subset is also an
important achievement and we could show that a random
sample of 100k users from the Netflix data set is sufficient to
gain a result with almost the same quality as the much larger
full data set with 480k users - however, this was only possible
by using the ground truth. Further research is necessary to
understand whether there is also a heuristic oblivious of any
ground truth to determine the necessary size of a subset of the
data to achieve a high-quality link assessment.
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[5] E.-Á. Horvát, J. D. Zhang, S. Uhlmann, Ö. Sahin, and K. A. Zweig,
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