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Complex Systems as Multiplex Networks

Understanding of Complex systems needs more complicated frameworks like multiplex networks
than ordinary simple graphs [7].
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Complex Systems as Multiplex Networks

Understanding of Complex systems needs more complicated frameworks like multiplex networks
than ordinary simple graphs [7].

Analyzing the influence of nodes in networks –from simple graphs to multilayer networks– is
always a fundamental question to be addressed in order to solve many real problems [6].
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The usefulness of Centrality Measures in Multiplex
Networks

Analyzing flow processes in
multiplex networks such as
epidemic transmission in
Transportation networks [2, 4].

Identifying cancer drivers in
Biological networks using the
representation of protein-protein
interaction, gene regulation,
co-expression, and metabolic
network in a multiplex network
[1].

Analyzing leading drivers in
Terrorist networks, where for
instance, the importance of a
node in “communication” layer is
affected by the importance of the
node in “trust” layer [6].

img: UCSF News Center

img: Aljazeera News
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Degree Centrality as the simplest index in Multiplex
networks

A network with |L| layers
L = {L1, L2, · · · , L|L|} where each
layer li is a simple graph
comprised of a set of Vi nodes
and Ei ⊆ Vi × Vi edges.

A set of nodes are common:
V ∗ =

⋂|L|
i=1 Vi .

The degree degi (v) of any node v
is defined as the number of edges
connected to the node v in layer
Li .

The result of ranking is from
position 1 to position |V ∗|.
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Degree centrality in Multiplex Networks· · ·

Given multiple layers with different structure and the different position of nodes in layers,
obtaining a single ranking of centrality is more complicated.

A comparison of centrality index values of nodes in different layers requires a careful
normalization before the aggregation.

The concrete choices of such preprocessing like normalization and aggregation are almost
never discussed in network analytic papers!

These preprocessing seem to be inconsequential!?!?!?

Even the most simplest index using different modeling decisions can turn a node from the most
central to the least central!
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Different modeling decisions
The normalization strategies

NormMethod 1, for layer Li takes degi (v) for all v ∈ V ∗ and normalizes it with the minimum and
maximum values in the set of common nodes. This results in a vector of normalized indices of
[0, 1] for layer Li .

C1(v , i) =
degi (v)−min{degi (v)|v ∈ V ∗}

max{degi (v)|v ∈ V ∗} −min{degi (v)|v ∈ V ∗}

NormMethod 2 is similar to the last method but the normalization is done using the minimum and
maximum values in the set of all nodes (Vi ) in layer Li .

C2(v , i) =
degi (v)−min{degi (v)|v ∈ Vi}

max{degi (v)|v ∈ Vi} −min{degi (v)|v ∈ Vi}
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The normalization strategies...

NormMethod 3 uses the results by NormMethod 2 and multiplies them with the fraction of the
maximum degree in layer Li and the maximum degree among all nodes in all |L| layers. This results

in a vector of indices of nodes (v ∈ Vi ) between [0, max{degi (v)|v∈Vi}
max{degi (v)|v∈

⋃
Vj ,1≤i≤|L|} ].

C3(v , i) = C2(v) ·
(

max{degi (v)|v ∈ Vi}
max{degi (v)|v ∈

⋃
Vj , i ∈ [1, . . . , |L|]}

)

NormMethod 4 for each layer, we rank the nodes non-increasingly by their degree degi (v) and
obtain ri (v). This is then normalized by ni .

C4(v , i) =
ri (v)

ni
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Why the normalized ranking?
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Figure: As can be seen, 90% of the degrees in Lufthansa are smaller than 70% of the degrees in Airberlin. If
an aggregation wants to reward at least the most central nodes on each layer, this is difficult as even medium
central nodes in Airberlin would get a larger index than most of the Lufthansa nodes.
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Different modeling decisions
The aggregation strategies

Maximum Entropy Ordered Weighted Averaging (MEOWA) operator (denoted by λ) creates a
single number based on the vector of a node’s |L| normalized degrees as follows:

λ(Cx (v , 1),Cx (v , 2), · · · ,Cx (v , |L|)) =
∑
j

wj dj (v)

where D = (b1, b2, ..., b|L|) is the non-increasingly sorted vector of the normalized degrees, and w
is a weight vector. The weight vector is obtained using the following function based on a parameter
β [5]:

wi =
e
β n−i

n−1∑n
j=1 e

β n−j
n−1

.
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The aggregation strategies...

β = 20: the weight vector is close to (1, 0, . . . , 0) and the aggregation strategy is
(OR-operator); at least one layer.

β = −20: the weight vector is close to (0, 0, . . . , 1) and the aggregation strategy is
(AND-operator); all layers.

β = 0: the weight vector is ( 1
n
, 1
n
, · · · , 1

n
) and the aggregation strategy is (Average).

Any β-value between the extreme strategies of “at least one” and “all layers” can be described using
a set of proportional linguistic quantifiers (a few, some, most, almost introduced by Zadeh [9]).

Ω =
1

n − 1

n∑
i=1

(n − i)
e
β n−i

n−1∑n
j=1 e

β n−j
n−1
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European airlines data set

A network comprised of four layers of airlines: Air Berlin, Easyjet, Lufthansa, and Ryan air. The
order varies from 75 to 128 among four layers [2]. 9 nodes are common among the four layers.
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Properties Air-Berlin Easyjet Lufthansa Ryanair
|Vi | 75 99 106 128
|Ei | 239 347 244 601
maxv∈Vi

{deg(v)} 37 67 78 85
maxv∈V∗{deg(v)} 26 17 5 28
minv∈Vi

{deg(v)} 1 1 1 1
minv∈V∗{deg(v)} 1 2 1 5

e.g.,

deg(Manchester) : 1, 12, 5, 5→ C1(v) : 0, 0.667, 1 , 0

C2(v) : 0, 11
66

, 4
77

, 4
84
→ 0, 0.167 , 0.052, 0.048

C3(v) : C2(v) · ( 37
85

, 67
85

, 78
85

, 85
85

) → 0, 0.131 , 0.048, 0.048

C4(v) : 0.093, 0.818, 0.887 , 0.461

deg(Francisco) : 12, 5, 1, 15→ C1(v) : 0.44 , 0.2, 0, 0.435

C2(v) : 0.306 , 0.061, 0, 0.167

C3(v) : 0.133, 0.048, 0, 0.167

C4(v) : 0.833 , 0.611, 0.184, 0.789
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Measuring the sensitivity of the nodes to the modeling
decisions

The overall sensitivity of a node on the chosen normalization strategy is:

∆norm(v) := max{maxRank(v , β)−minRank(v , β)|βinΓ}

where Γ is a set of different β-values.
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The overall sensitivity of a node on the chosen normalization strategy is:

∆norm(v) := max{maxRank(v , β)−minRank(v , β)|βinΓ}

where Γ is a set of different β-values.

Example:

∆norm(Manchester) := max{3, 3, 2, 2, 1, 3, 4, 5, 5, 5, 5} = 5
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Measuring the sensitivity of the nodes to the modeling
decisions

Let minRank(v ,Ci ) denote the minimal rank of node v based on normalization strategy Ci over
all β-values and define maxRank(v ,Ci ) accordingly.
The overall sensitivity of a node on the chosen aggregation strategy is:

∆agg(v) := max{maxRank(v ,Ci )−minRank(v ,Ci )|1 ≤ i ≤ 4}
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The overall sensitivity of a node on the chosen aggregation strategy is:

∆agg(v) := max{maxRank(v ,Ci )−minRank(v ,Ci )|1 ≤ i ≤ 4}

Example:

∆agg(Manchester) := max{5, 2, 2, 5} = 5
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European airlines data set

Now if we remove the layer of Lufthansa from the aggregation scenario, then we have 20 common
nodes.
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Figure: The sensitivity of the 20 common airports to
the choice of aggregation strategy and normalization
strategy. The four sections contain the nodes
sensitive to only one choice (A0N+ or A + N0),
those sensitive to none (A0N0), or both (A + N+).
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European airlines data set

Now if we remove the layer of Lufthansa from the aggregation scenario, then we have 20 common
nodes.
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Tweets dataset

A network comprised of four layers representing different interactions on topics concerning the
“Higgs Boson”: mentioning, replying to the tweets, re-tweeting the tweets of the other users, plus
the social network of followers/followees [3].
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Law firm dataset

A network comprised of three layers of seeking advice, co-working, and having a friendship outside
the firm among 71 attorneys [8].
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Summary

The results show that even a seemingly simple measure using different models can turn a
node from being the most central to the least central.

The observed high sensitivity of single nodes to the specific choice of aggregation and
normalization strategies emphasizes that all these models are of strong importance,
especially for all kinds of intelligence-analytic software, as it questions the interpretations of
the findings.

All these preprocessing steps need to be documented to make the analysis reproducible and
its interpretation analyzable.

Future works: categorizing nodes using fuzzy linguistic terms with respect to their overall
centrality index.
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